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Abstract
We propose a method for analysing the dynamics of systems exhibiting slow
relaxation, which is based on mesoscopic non-equilibrium thermodynamics.
The method allows us to obtain kinetic equations of the Fokker–Planck type
for the probability functional and their corresponding Langevin equations. Our
results are compared with those obtained by other authors.

1. Introduction

The problem of the glass transition has attracted much attention in recent years, and has been the
subject of intense experimental, computational, and theoretical investigation. Mode-coupling
theories and replica techniques have been able to capture some trends of the phenomenology of
these systems. Although interesting theoretical results have been obtained by means of these
theories, the understanding of the problem is far from complete [1, 2].

Supercooled liquids and colloids near a glass transition are characterized by extremely slow
relaxation of the density variable. As the glass transition is essentially a dynamic transition, it
becomes important to provide a dynamical description of the evolution of the density variable.
In addition, the presence of slow dynamics in such systems emphasizes the importance of
activated processes, since they are the main mechanism able to make the system evolve and
escape from being trapped in metastable states. A complete description of these systems should
then take such processes into account.

In this paper we present a simple mesoscopic formalism that allows one to derive kinetic
equations of the Fokker–Planck type for the probability functional of the density fields in
supercooled liquids and dense colloidal systems. This approach is based on the hypothesis of
local equilibrium in the phase space of the system, which allows us to describe the processes
leading to variations in the state of the system by means of non-equilibrium thermodynamics.
The extension of that theory to the mesoscopic level of description has been referred to as
mesoscopic non-equilibrium thermodynamics [3–9].

The plan of the paper is as follows. In section 2, we derive the kinetic equation for
the probability distribution functional of the momentum-density and mass-density fields. By
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adiabatic elimination of the momentum density we obtain the kinetic equation describing the
slow dynamics, giving the configurational changes in the system. In section 3, we introduce
fluctuations of the distribution functionals, obtaining the corresponding Langevin equation.
Finally, in section 4, we conclude by summarizing our main results.

2. Kinetic equations

We consider the system, either a pure liquid or a colloidal suspension, as a continuum divided
into tiny cells of volume v0. In each cell we define a mass density ρ(r) and a momentum
density g(r) = ρv(r), with r being the position vector of a cell and v the velocity field. For
simplicity, we will introduce the compact notation {�} ≡ {ρ, g}.

Let us consider P̂ ({�}, t) as the distribution functional in phase space, normalized
according to the relation∫

P̂ ({�}, t) δ� = N (1)

where N is the number of possible states in phase space. Related to this distribution
functional we introduce the phase-space entropy S(P̂ ({�}, t)), which satisfies the Gibbs
equation introduced by mesoscopic non-equilibrium thermodynamics [10]:

�S = − 1

T

∫
µ({�}, t)�P̂ ({�}, t) δ�. (2)

Here T is the temperature, � represents a virtual change of the corresponding quantity, and µ
is a chemical potential defined in phase space satisfying

µ = −T δS
δP̂
. (3)

Its expression can be obtained with the help of the Gibbs entropy postulate [10]

S = −k
∫
P̂ ln

P̂

P̂ leq
δ� + S leq (4)

where k is the Boltzmann constant. In this expression

P̂ leq = exp{−β[µ0 +HK{�} +HU {ρ}]} (5)

is the distribution functional at local equilibrium, with β = 1/kT , and µ0 the chemical
potential at local equilibrium. Moreover, we have defined the kinetic energy functional

HK{ρ, g} = 1

2

∫
g(r)2

ρ(r)
dr (6)

and the potential energy functional

HU {ρ} =
∫
f {ρ} dr (7)

where f {ρ} is the free-energy-density functional.
By considering variations in equation (4) we can obtain

�S = −k
∫
�P̂ ln

P̂

P̂ leq
δ� +�S leq (8)

where

�S leq = − 1

T
µ0 �N = − 1

T

∫
µ0 �P̂ δ�. (9)
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Thus, from comparison of equations (2) and (8), we can infer the expression for the chemical
potential:

µ = µ0 + kT ln
P̂

P̂ leq
. (10)

We now assume that the distribution functional evolves according to the continuity
equation

∂P̂

∂t
+

∫ (
δ

δρ
ρ̇P̂ +

δ

δg
· ġP̂

)
dr = −

∫
δ

δg
· Jg dr (11)

where the dot over the field variables indicates a time derivative and Jg is a diffusive current
in momentum space.

From equations (2) and (11) we can obtain the rate of the entropy variation, which can be
written as

∂S

∂t
= ∂eS

∂t
+�. (12)

In this expression, we can identify the first term on the right-hand side as the rate at which
entropy is supplied to the system by its surroundings through the external constraints, given
by

∂eS

∂t
= 1

T

∫ ∫
µ

(
δ

δρ
ρ̇P̂ +

δ

δg
· ġP̂

)
dr δ�. (13)

The second contribution corresponds to the entropy produced inside the system due to the
irreversible processes, whose value is

� = − 1

T

∫ ∫
Jg · δµ

δg
δ� dr (14)

where a partial integration has been performed. This entropy production has the usual form of
flux-force pairs from which we can infer the phenomenological relation

Jg = − 1

T

∫
L(r, r′) · δµ

δg
dr′ (15)

where the Onsager coefficients L satisfy the Onsager relations L(r, r′) = L(r′, r)†, in which
† stands for the Hermitian conjugate. By computing the functional derivative and assuming
locality in the coordinates, i.e. L(r, r′) = L(r)δ(r − r′), one obtains

Jg = −H(r) ·
(
β−1 δ

δg
+
δHK

δg

)
P̂ (16)

where H(r) ≡ L(r)/T P̂ can be interpreted as a mobility tensor. Its expression follows from
the Navier–Stokes equation [11]

H(r) = −η( 1
3∇∇ + 1∇2

) − ξ∇∇ (17)

with η and ξ being the shear and bulk viscosities, respectively, and 1 the unit tensor.
On introducing the current that we have obtained in equation (16) into the continuity

equation (11) and using the expressions for ρ̇ and ġ given by the reversible part of the Navier–
Stokes equation [11], this yields

∂P̂

∂t
=

∫ {
δ

δρ
∇ · g +

δ

δg
·
[
ρ∇δHU

δρ
+ ∇ · gg

ρ

]
+
δ

δg
·H(r) ·

[
β−1 δ

δg
+
δHK

δg

]}
P̂ dr

(18)
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which constitutes the functional Fokker–Planck equation for the probability distribution
functional P̂ ({�}, t).

In the diffusive regime, when equilibration in momentum has occurred and only
configurational changes are possible, this equation simplifies considerably. To derive the
corresponding equation we define the reduced distribution functional

P({ρ}, t) ≡
∫
P̂ δg (19)

and the current

Jρ ≡
∫

gP̂ δg. (20)

By taking the time derivative of equation (19) and using equation (18) we obtain

∂P

∂t
=

∫
δ

δρ
∇ · Jρ dr. (21)

The probability current defined through equation (20) evolves according to

∂Jρ

∂t
=

∫
g
∂P̂

∂t
δg =

∫ ∫
δP̂

δρ(r′)
g(r)∇ · g(r′) δg dr

−
∫
P̂∇ · gg

ρ
δg − ρP∇δHU

δρ
− 1

ρ
H · Jρ (22)

where we have used equation (18), and partial integrations have been performed taking into
account that δg(r)/δg(r′) = δ(r − r′). We now assume that (1/ρ)H · Jρ 	 τ−1Jρ , where
τ is the characteristic timescale of the inertial regime. In the diffusive regime when τ 
 t ,
assuming equilibration in momentum we can write [12]

P̂ = �{�}P({ρ}, t) (23)

where

� = Z{ρ}−1 exp

(
− β/2

∫
�g2

ρ
dr

)
(24)

is a local Maxwellian with �g = g − 〈g〉ρ . Here 〈g〉ρ = (1/P )
∫

gP̂ δg is the conditional
average, and

Z{ρ} = Z0 exp

{
3

2v0

∫
ln

[
ρ(r)

ρ0

]
dr

}
(25)

with ρ0 being the uniform mass density of the system. Thus, by substituting equation (23)
in (22), performing the momentum integration, and eliminating inertial terms we arrive at [7]

Jρ = −τρ(r)∇
(
kT

δ

δρ
+
δH

δρ

)
P (26)

with

H {ρ} = HU − kT lnZ = HU − 3kT

2v0

∫
ln

[
ρ(r)

ρ0

]
dr − kT lnZ0 (27)

where we have used the result
∫

g(r)g(r′)� δg = kT 1 ρ(r)δ(r−r′). Finally, by substitution
of the current Jρ given in equation (26) into (21) we obtain

∂P

∂t
= −τkT

∫
δ

δρ(r)
[∇ · ρ(r)∇]

{
δ

δρ(r)
+ β

δH

δρ(r)

}
P dr (28)
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which constitutes the functional Fokker–Planck equation in the diffusive regime, in which
τkT plays the role of a diffusion coefficient. The stationary solution is the Boltzmann
distribution functional Pst ∼ exp(−βH) [13], thus satisfying detailed balance. This equation
has been previously obtained in [12] by means of projection operator techniques. It should
be mentioned, as already been pointed out [12], that the presence of a diffusive term in this
equation incorporates the existence of hopping or activated processes.

3. Fluctuating kinetic equations

Our purpose in this section is to study the dynamics of the fluctuations in the distribution
functional around a given reference distribution. To this end, we will consider that the
distribution solution of equation (18) corresponds to the average over an initial distribution in
phase space. Consequently, the actual value of the distribution functional will differ from the
solution of equation (18) in the presence of fluctuations.

In our derivation of the Fokker–Planck equation, we will incorporate such fluctuations by
applying fluctuating hydrodynamics in phase space [5]. Thus, we will split up the current Jg
into systematic and random contributions:

Jg = JS
g + JR

g . (29)

The former is given precisely by the linear law (15) whereas the latter defines a Gaussian
white-noise stochastic process of zero mean, and the fluctuation-dissipation theorem is given
by

〈JR
g ({�}, r, t)JR

g ({�′}, r′, t ′)〉P̂0
= 2kLδ({�} − {�′})δ(r − r′)δ(t − t ′) (30)

where L has been defined in equation (15), and P̂0 is an initial probability distribution.
When employing the decomposition (29) in the continuity equation (11), we obtain

∂P̂ ∗

∂t
= −

∫ (
δ

δρ
ρ̇P̂ ∗ +

δ

δg
· ġP̂ ∗ +

δ

δg
· JS

g +
δ

δg
· JR

g

)
dr (31)

where P̂ ∗ is the fluctuating probability distribution. This equation can also be expressed as

∂P̂ ∗

∂t
=

∫ {
δ

δρ
∇ · g +

δ

δg
·
[
ρ∇δHU

δρ
+ ∇ · gg

ρ

]

+
δ

δg
·H(r) ·

[
β−1 δ

δg
+
δHK

δg

]}
P̂ ∗ dr +

∫
δ

δg
· JR

g dr (32)

which corresponds to the fluctuating functional Fokker–Planck equation.
Using the same adiabatic elimination procedure as was performed in the previous section

we can obtain the fluctuating functional Fokker–Planck equation in the diffusive regime,
yielding

∂P ∗

∂t
= −τkT

∫
δ

δρ(r)
[∇ · ρ(r)∇]

{
δ

δρ(r)
+ β

δH

δρ(r)

}
P ∗ dr + τ

∫
δ

δρ
∇ ·

∫
JR
g δg dr.

(33)

From this equation it is possible to get the Langevin equation for the first moment of the
distribution functional, defined through

ρ(r, t) =
∫
ρ(r)P ∗({ρ}, t) δρ(r). (34)
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By multiplying equation (33) by ρ(r) and integrating, one obtains

∂ρ(r, t)

∂t
= τkT

∫
[∇ · ρ(r)∇]

{
δ

δρ(r)
+ β

δH

δρ(r)

}
P ∗ δρ(r) + η(r, t) (35)

where η(r, t) = −τ∇ · ∫
JR
g δρ δg is the noise term whose correlation, once equation (30)

has been used, is seen to be

〈η(r, t)η(r′, t ′)〉 = 2kT τ∇r · ρ(r, t)∇r ′δ(r − r′)δ(t − t ′). (36)

The first term inside the bracket in equation (35) is the noise-induced drift [14], which arises
from the non-linear character of the dynamics which is due to the density dependence of the
kinetic coefficient.

Assuming P ∗ = δ({ρ} − {ρ}), equation (35) yields

∂ρ(r, t)

∂t
= τ∇ · ρ(r, t)∇δH({ρ(r, t)})

δρ(r, t)
+ η(r, t) (37)

which coincides with the stochastic equation in terms of the number-density field ρ(r, t)
of [13, 15–19]. The average over the noise of equation (37) yields the mean-field equation
proposed in [20].

4. Conclusions

In this paper, we have proposed a method for obtaining Fokker–Planck equations for the
probability distribution functional of the density fields for a liquid in the framework of
mesoscopic non-equilibrium thermodynamics [7]. Keeping the essentials of non-equilibrium
thermodynamics, and extending its range of validity to the mesoscopic domain, we have
proposed a Gibbs equation where the entropy depends on the probability distribution functional
in phase space. The peculiar dynamics of glassy systems enables one to assume the existence of
two dynamical regimes, one related to the fast processes or inertial regime, the other related to
the slow relaxation processes or diffusive regime. After adiabatic elimination of the fast degrees
of freedom [7], we have obtained the Fokker–Planck equation for the probability distribution
functional of the fluid mass density, which describes the slow dynamics of the system. The
previous description is independent of the underlying microscopic model. The important
requirement is the existence of well separated scales of time and length in the system, which
sustain the validity of the local equilibrium hypothesis in phase space. Supercooled liquids
and dense colloidal suspensions are known to satisfy this requirement.

At the mesoscopic level we have considered the hydrodynamic fields of the liquid
as stochastic variables whose deterministic dynamics is governed by the Navier–Stokes
equations. From these equations we can identify the phenomenological coefficients in the
kinetic equations. We have also analysed fluctuations of the distribution functional by adding
a stochastic contribution to the current in phase space which satisfies a fluctuation-dissipation
theorem. From this procedure we obtain a Langevin equation for the mass density.

One of the advantages of the formalism that we have proposed in this paper is that the
dynamic description in terms of a probability functional provides complete information on the
slow dynamics of the system [12]. In addition, its validity is not restricted to the particular
situations addressed in this paper. The same kind of description is perfectly applicable to
a wide variety of different situations, among which we might mention the cases of granular
materials [21] or nucleation and phase transitions in inhomogeneous media [22, 23].
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